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The crys ta l lography of deformat ion twinning is formula ted  on a fresh ma themat i ca l  basis. This leads 
to a simplified technique for calculating the reciprocal elements corresponding to a given pair  of 
ra t ional  twinning  elements.  I t  is shown how the scale of homogenei ty  of the deformat ion m a y  be 
deduced  from macroscopically available data .  A new analysis is presented of the atomic displace- 
ments  involved in rota t ion twinning.  Criteria are laid down for the selection of operat ive twinning 
modes out  of all those ma themat ica l ly  admissible. 

Introduct ion  

Twinned crystals are usually characterised by four 
crystallographic elements symbolised K1, K2, ~1 and 7e, 
together with two subsidiary elements P and ~t, as 
illustrated in Fig. 1 and enumerated in the following 
Table. 

K1 : twin plane. 
Kp.: 'second undistorted'  plane. 
P :  plane of shear (perpendicular to K 1, K 2, 2). 
~1: line of intersection of P,  K~. 
~ :  line of intersection of P,  K2. 
2" line of intersection of K1, K~ (perpendicular to 

~1, 72, P). 

Either K1, 7~ must be rational (reflection twin, or 
twin of the first kind) or 7~, K9 must be rational 

(rotation twin, or twha o~ t]~e secon~ ]x~n~). ]} ]~1 ~s 
rational, it may be regarded as a mirror plane which 
reflects the structure of the twin into tha t  of the 
matrix crystal . t  If ~l is rational, it may be regarded 
as an axis about which a rotation of 180 ° transforms 
the structure of the twin into tha t  of the matrix crys- 
tal.~ As regards metals, apart  from certain twins in 
a-uranium and possibly in magnesium and ti tanium, 
all four elements are found to be rational and the 
distinction between the two kinds loses its significance 
(compound twin). Twinning of either kind may be 
produced by mechanical means. On the macroscopic 
scale, the deformation effectively consists of homo- 
geneous simple shear displacements parallel to the 
plane K~, in the direction ~ ,  of shear magnitude 
defined by 

S = 2  cot ~179=2 tan 71K~=2 tan 72K1, (1) 

where 7~7o. denotes the acute angle between the two 

directions concerned, 71K2 denotes the acute angle 

* Now at Division of Pure Physics, N.R.C., Ottawa, Canada. 
t In conformity with metallurgical usage the two twin- 

related parts are here distinguished as 'twin' and 'matrix', 
respectively. 

between 71 and the normal to the plane K2, etc. 
(Fig. 1). 

K~ 

(~) (~) 

'71 

Fig. 1. (a) Relation between planes K1, K2, P and directions 

71, 72, 2. (b) If atom at L is displaced to L', then t~= 

LL']d = 2 cot 9 = 2 cot 7172, e~c. 

To any given twin mode 

K1 = (Me/), K2 = (h'k'l'), 71 = [uvw], 72 = [u'v'w'] 

there corresponds theoretically a conjugate or recip- 
rocal mode 

K1 = (h'k'l'), K2 = (hk/), 71 = [u'v'w'], ~72 = [uvw] , 

involving the same S. Accordingly, apart  from com- 
pound twins, the reciprocal of a reflection twin is a 
rotation twin, and vice versa. From the macroscopic 
point of view, there should be nothing to choose be- 
tween a mode and its reciprocal since both accomplish 
equivalent deformations. On the other hand, the two 
displacement systems involved have markedly dif- 
ferent crystallographic characteristics, bringing into 
play different physical factors. I t  is not surprising to 
find, therefore, tha t  in most cases one of the pair 
hardly ever becomes operative except, possibly, 
under special conditions of temperature and loading. 
Thus, as shown recently by Japanese investigators 
(Maruyama & Kiho, 1956), the theoretically ex- 
pected fl-tin K1=(101) mode makes an appearance 
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when the usual K I =  (301) mode is prevented from 
becoming active by external constraints; it had never 
previously been reported operative. Mechanical twins 
in a-uranium polycrystals have been studied by Cahn 
(1953), and in single crystal specimens by Lloyd & 
Chiswick (1955). The compound twin 

K I =  (130), K2 = (110), 
~ = [ 3 1 0 ] ,  ~2=[110], S=0.298 (2) 

and the rotation twin 

K1 ='(172) ' ,  K2= (112), 
~]~=[312], ~]e='[372]', S=0.227 (3) 

have been established by both investigations; the 
rotation twin 

/Q= ' (176) ' ,  K~= (111), 
~]~ = [512], ~]~ ='[125] ' ,  S =  0.214, (4) 

has been reported by Lloyd & Chiswick, and the 
reflection twin 

K1 = (112), K~ ='(172) ' ,  
W='[372] ' ,  W=[312], S = 0 . 2 2 7 ,  (5) 

i.e. the reciprocal of (3), has been reported by Cahn. 
Dashed brackets indicate a convenient rational ap- 
proximation for an irrational element. The modes are 
here enumerated according to relative frequency of 
occurrence. I t  will be noted tha t  the reciprocals of 
(2) and (4) do not seem to be operative, and tha t  
twins of the second kind are preferred to their recip- 
rocals of the first kind. 

Although the crystallography of twinning was first 
examined over fifty years ago, various important  
problems in this field still require attention. For 
instance, the scale of homogeneity of the deformation 
is indicated by the value of certain crystallographic 
invariants, but this correlation has never been system- 
atically exploited. No satisfactory t reatment  exists of 
rotation twinning atomic displacements, part ly be- 
cause the conventional projection of the crystal on to 
P yields little, and sometimes misleading, information. 
Again, to be given a rational pair of twinning elements 
automatically implies, in principle, a knowledge of the 
reciprocal pair, but  explicit formulae for calculating 
the lat ter  pair have been lacking. Finally, although 
twinning phenomena are determined primarily by the 
crystal structure and not by the specific kind of atom 
involved, crystallographic criteria for understanding 
the selection of operative modes have only recently 
progressed beyond Mallard's law. Failure of an ad- 
equate attack on these problems stems from a funda- 
mental limitation inherent in the usual approach to 
the subject: this first introduces deformations on the 
macroscopic scale, and only within that framework 
develops an atomic model. This approach is reversed 
in the present paper. Our procedure essentially con- 
sists of making plausible hypotheses about atomic net 
twinning displacements, and concentrating on those 

tha t  lead to the correct macroscopic features. This 
enables the theory to be formulated on a fresh mathe- 
matical basis, in which its powers and limitations be- 
come more clearly revealed. Particular emphasis is 
placed here on rotation twinning displacements, as the 
less familiar case; this emphasis also facilitates com- 
parison with the data on a-uranium. These displace- 
ments are related to their reciprocal reflection twinning 
displacements by a rigid-body rotation, so tha t  an 
analysis of the former implies, in fact, a corresponding 
analysis of the latter. 

I t  is convenient to distinguish between crystals of 
monatomic and of diatomic motif units. In the 
former, the atomic sites constitute a Bravais space 
lattice, as exemplified by b.c.c, metals, indium and 
mercury. The latter  are characterized by a motif 
structure, as exemplified by c.p.h, metals, a-uranium, 
fl-tin, diamond and bismuth. The text  is divided 
accordingly, each section being supported by a mathe- 
matical appendix. These two sections provide an 
analysis of twins tha t  occur in practice. The third 
section is concerned with the factors responsible for 
the selection of operative modes, out of all those 
mathematically admissible. The main conclusions of 
this and of previous work are embodied in the final 
section. 

Rota t ion  tw inn ing :  Mona tomic  mot i f  un i t s  

A rational axis ~1 = [pqr] is introduced and a hypo- 
thetical crystal deformation ~ set up subject to three 
requirements: each atom undergoes a displacement in 
the direction ~1, by an amount linearly dependent on 
its position, to become twin-related to some matrix 
atom by virtue of a 180 ° rotation about ~1 (Fig. 2). 
Analysis (App. I) shows that  these three requirements 
automatically imply an invariant plane strain, i.e. 
homogeneous simple shear displacements parallel to 
an invariant plane possibly combined with a uniaxial 
extension or compression normal to the plane. I t  will 

L +  t~/ 

j 
w 

- L  - L  + r  1 

Fig. 2. Atom at L undergoes displacement tT I to become twin- 
related to atom at --L + 1]. In Appendix I the latter point 
is taken more generally to be -L+n11. 
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be noted tha t  ~71 does not lie within the invariant 
plane unless the lat ter  component is absent. ~ is 
completely determined by any three assigned integers 
n,, n2, n~; and it leaves the plane (nln2na) undistorted, 
i.e. related to its original configuration by a rigid-body 
rotation and translation. Depending on the choice of 
integers, three possibilities now arise: 

(a) ~ consists of a shear plus a compression. This 
would not be acceptable since it requires atoms to 
interchange places, or even to coalesce. 

(b) ~ consists of a shear plus an extension. This 
would not be acceptable, since the deformed crystal 
generates only a superlattice of the matrix crystal on 
rotating through 180 ° about U~" 

(c) ~ consists of a shear alone. In this case: the 
deformed crystal generates the complete matrix crystal 
on rotating by 180 ° about ~71; the direction U~ lies 
within the invariant plane, which may evidently now 
be identified as the element K1 of a possible twin; 
and the plane (n~nen~) undergoes only a net rigid-body 
rotation, becoming identified as the element Kg. of the 

respectively, which are separated by the plane 
nix  + n2y + n3z = 1. Discarding reference to any co- 
ordinate system, (6) means tha t  the unit  lattice 
vector in the direction ~71 is intersected by a K2-plane. 
As a corollary, the number of such planes intersecting 
this vector provides the invariant  value of 2: corre- 
sponding to a given r/l, Ke. For instance ~/1--[111], 
K e = ( l l 2 ) ,  in the b.c.c, lattice. The relevant vector 
joins [o, o, o] to [½, ½, ½], which points lie on the planes 
x + y + 2z = 0,2 respectively; these are interleaved by 
the plane x + y + 2 z = l ,  and by no other (112) plane, 
whence 27=2. The integers nl, n2, n3 satisfying (6) 
may have a common factor 2, usually cancelled out in 
defining the indices of K2: this mcans tha t  no _K2- 
plane intersects the unit lattice vector, as is the case 
with indium and mercury. However, by doubling the 
indices of K2, we formally introduce an imagined 
K2-plane between any two neighbouring actual K2- 
planes and thus regain contact with (6). 

• • • ~ ~7, 

• • • 

/tt// . . . . .  • 
(~) (b) 

twin. Since the crystal can be built up from the set of 
parallel planes (nln2ns), we may picture ~ as a net 
rigid-body rotation of each plane (nln2ns) about its 
line of intersection 2 with K1 (Fig. 3). 

Fig. 4. (a) Untwinned lattice, indicating traces of successive 
K2-planes , case Z=4. (b) Lattice as deformed by 6 p. 
Every second K2-plane is twinned. 

Since the crystal shear ~ is perfectly homogeneous, 
(o) (b) 

Fig. 3. (a) Untwirmed lattice, indicating traces of Ke-planes 
(schematic). (b) Twinned lattice, case Z=2. Omitting 
alternate K~-planes in (a) and (b) corresponds to case ~7= 1. 

Subject to certain conventions in the labelling of ~71, 
the restriction (c) is achieved by choosing only integers 
which satisfy the fundamental  relation 

--~ = p n l +  qn2 + rn8 = 2 .  (6) 

The same conventions ensure tha t  2~ < 2 corresponds 
with the possibility (a) above and 2 : > 2  with (b). 
These hypothetical  interpretations are, of course, 
limited by the supposition of perfect homogeneity and 
could never be invoked in practice; relaxing the 
homogeneity requirement gives Z >2  a completely 
different significance, as discussed in the next para- 
graph. Relation (6) holds on the understanding that  
the integers p, q, r have no common factor, and tha t  
they refer to a primitive unit cell of the space lattice. 
Geometrically interpreted, (6) means tha t  the join of 
[o, o, o] to [p, q, r] is bisected by an (nln2ns) plane: 
these two points lie on the planes nix  + n2y+ n3z = 0,2 

it may  be identified with the macroscopic shear 6 a. 
From the point of view of 6 f ,  relation (6) hinges 
critically on the requirement tha t  every atom arrives 
at  its twin position by executing 6 a. If this require- 
ment were relaxed, it being supposed tha t  only a 
superlattice of the atoms twins in accordance with 6 z, 
(6) would be replaced by 

x = 2 ; v ,  (7) 

where N stands for the number of atoms per unit  cell 
of the superlattice. We may picture 6P as formally 
subjecting each K2-plane to a net rigid-body rotation, 
but  twinning only every Nth  plane of the series 
(Fig. 4); atoms on the intervening planes undergo 
additional, inhomogeneous, displacements (which can- 
not be uniquely determined) before reaching their final 
positions. Conversely, a macroscopic twinning shear 
characterized by (7) could be homogeneous only on 
the scale of the relevant superlattice. The inference 
for b.c.c, metals, indium and mercury, where in each 
case N =  1, is obvious. 

Given a pair of rational elements 971 and K2, the 
indices of K1 may be readily calculated by a new 
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method tha t  emerges from the analysis (App. II). 
With K1 and K2 known, the remaining elements 
A, P,  ~ - i n  tha t  order--are  found by  straightforward 
analytical geometry. Given only the rational element 
71, there exist an infinite number of mathematically 
admissible possibilities for K2. Criteria for selecting 
the most likely operative K2 are given in a later sec- 
tion. Reciprocal theorems can be formulated without 
difficulty. 

Rotation twinning: Diatomic motif  units 

A crystal structure is characterized by  two distinct 
features: the grouping of atoms, or motif, which pro- 
vides the unit of repetition; and the reference lattice 
of the crystal, which defines how the unit is repeated. 
For nearly all metal structures the motif consists of 
not more than two atoms. We denote these by the 
symbols a, b and their mean-centre by the symbol r; 
the array of mean-centres constitutes a Bravais space 
lattice R. The equations of all planes and directions 
in the crystal formally refer to R, but  the association 
of a motif unit with each lattice point will be under- 
stood. When the motif reduces to a single atom, 
R becomes identified as the array of atomic sites. 

The stabili ty of metals is governed mainly by long- 
range forces, e.g. the Fermi energy, with the result tha t  
the motif behaves much less as a physical unit than 
might appear from the crystallographic formalism. In 
particular there are no appreciable energy barriers to 
its undergoing disruption in the course of glide 
processes. This possibility stands in marked contrast 
to crystals such as calcite, where deformation proper- 
ties are largely determined by the stability of the 
C02-radical. Analysis shows tha t  the lat ter  type of 
mechanism applies, in metals, to the a-uranium twin 
(2) and to the usual bismuth twin: two cases where 
twinning takes place with unusual facility. Formally 
it also applies to the a-uranium twin (4), but  this 
twin has only been reported in one investigation and 
seems of infrequent occurrence. There are theoretical 
grounds for believing tha t  a particularly high activa- 
tion energy barrier opposes the reaction here, arising 
from the semi-covalent nature of the a-uranium struc- 
ture (Dove, 1956). For all other established metal 

twins, disruption is found to play a key role in the 
mechanism of deformation. 

% % / / 
% % / / 

% %  % / / 
% 

(o) (b) 

Fig. 6. (a) Crysta l  as de fo rmed  b y  5:,  case 2 : =  4. (b) F ina l  
tw inned  crystal .  Motif  uni ts  on a l te rna te  planes have  under-  
gone ro ta t ional  reshuffle, as in Fig. 7. Those  on in tervening 
planes have  d is rupted ,  as descr ibed in Fig.  8. 

Following the t reatment  of the preceding section, 
we picture the macroscopic shear as formally subject- 
ing each motif unit  to a rigid-body translation in the 
direction ~1, by an amount depending linearly on the 
position of its mean-centre. The deformed array of 
mean-centres may  be twin-related to R by a 180 ° 
rotation about ~1, as depicted in Fig. 5 (Y-mechanism) ; 
~q~ is then characterized by 2:=2,  exemplified by the 
modes of the preceding paragraph. More generally 
(X-mechanism), only a superlattice of mean-centres 
is twinned by ~9 ~ (Fig. 6) and the characteristic in- 
tegers satisfy a relation of the form (7). For all X-modes 
tha t  occur in practice, N = 2  in (7), i.e. 

Z = 4  (8) 

exemplified by the a-uranium twin (3), the usual c.p.h. 
twins, and the usual fl-tin twin. As previously, the 
K2-planes occupy a key role: each formally undergoes 
a rigid-body rotation with respect to ~ ,  mean-centres 
on every plane being twinned if (6) is satisfied and on 
every Nth  plane if (7) is satisfied. 

The preceding displacements define only the homo- 
geneous component of the deformation. This must be 
supplemented by an inhomogeneous component, i.e. 
additional displacements (termed 'reshuffles') which 
produce no macroscopic effects but  serve to generate 

(o) (b) (~) 

Fig. 5. (a) U n t w i n n e d  crys ta l  indica t ing  t races  of K2-planes (schematic).  (b) Crysta l  as deformed  b y  5#, case 2~----2. 
(c) F ina l  tw inned  crystal ,  af ter  ro ta t iona l  reshuffle of each mot i f  unit ,  as descr ibed in Fig.  7. 

A C 13 - -  16 
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Fig. 7. Y-mechanism.  (a) The mot i f  uni t  a t  L undergoes  rigid 
body  d i sp lacement  t~ so t h a t  its m e a n  cent re  becomes 
twin- re la ted  to m e a n  cent re  a t  - - L +  v I. (b) Complet ion of 
twin  by  ro ta t ional  reshuffle (schematic).  

the twin configuration. If the mean-centre r of a motif 
unit is twinned by :;f, the most likely reshuffle consists 
of net rotation of the unit about an axis through r 
normal to ~1 (Fig. 7). According to the Y-mechanism, 
all the motif units behave in this way. According to 
the X-mechanism, those on every second K2-plane 
behave thus when N =  2, on every third plane when 
N = 3 ,  and so on. Mean-centres on the intervening 
planes are not twinned by ~ :  the corresponding 
motif units suffer disruption and reconstruction ac- 
cording to a specific pattern, depending on N, in the 
course of which they become organised into a new 
array bearing the correct twin relation to the matrix 
crystal. I t  can be proved (App. II), when N = 2, that:  

(a) the constituent atoms of a disrupting motif unit 
may achieve twin positions by undergoing equal 
and opposite displacements in the direction 7]~ 
(Fig. 8); 

(b) these displacements may be chosen so as not to 

exceed un interatomic spacing in tLe direction ~. 

L_~LL ~'tL+r' 

-L+½~ 
(o) 

I 

IIr~L +~ I ~ L  

I I 
I I 

I I 
I I 
I I 
, I /ID 

~-L+~ 

(hi 

Fig. 8. X-mechan ism,  case 27=4. (a) The mot i f  uni t  a t  L 
undergoes  r igid-body d isp lacement  T~ so t h a t  its m e a n  
centre  becomes twin-re la ted  to - -L-F½r I. (b) Complet ion 
of twin  by  disrupt ion th rough  equal  and  opposite displace- 
ments  parallel to ~z (schematic). 

When N >  2 an increasing fraction of motif units 
suffer disruption; also the reshuffles follow a much 
more complex pattern than that  just described. 
Evidently, therefore, /V=2 defines the most ener- 
getically favourable disruption mechanism that can 
be envisaged. The restriction of operative X-modes to 
those satisfying (8) thus becomes readily understand- 
able. The question of competition between Y-modes 
and X-modes will be taken up in the following section. 

T h e  s e l e c t i o n  o f  o p e r a t i v e  m o d e s  

We now enquire: what physical factors select the 
usually operative twins, for a given crystal, out of all 
the mathematically admissible possibilities ? Aided by 
an invMuable inequality theorem, recent work (Jas- 
won & Dove, 1956; Kiho, 1954) has proved that  the 
choice of operative rational elements [pqr], (nln2n3)-- 
interpreted indifferently as either ~B, /(2 or n2, K1-- 
can be understood on the basis of three main criteria. 

1. Reshuffles are as far as possible avoided, thereby 
reducing the activation energy barrier for the re- 
action. With monatomic motif units they may be 
completely eliminated, hence the restriction (6) found 
in practice. With polyatomic motif units (apart from 
an exceptional case mentioned later) they are topolog- 
ically unavoidable, the most tolerable being those in 
accordance with the restrictions (6) or (8). 

2. Subject to the preceding criterion being satisfied: 
the smaller the S of a possible mode, the greater its 
chance of being operative. More precisely, all the 
hypothetical modes satisfying (6) determine an infinite 
class of discrete shear values; denoting the minimum 
of the class (apart from a possible zero) by $2, this 
defines the usual b.c.c., indium and mercury twins 
respectively. I t  also defines the usual bismuth twin 
and the s-uranium twin (4), whilst the next successive 
value of S defines the c~-uranium twin (2). Similarly $4, 
referring to the class satisfying (8), defines the usual 
c.p.h, and fl-tin twins respectively, and the s-uranium 
twin (3). I t  is seen without difficulty that  $4 _< $2. 

3. A Y-mode is generally preferred to an X-mode 
of equal or comparable S, since it affords a slightly 
more favourable reshuffle mechanism. Thus the c~- 

ur~n'mm ~'~in (~) occurs more Irequen~]y ~han (~) 
even though it has a somewhat higher S. The ex- 
ceptional feature of the s-uranium twin (4) has 
already been noted. In the bismuth case, it turns out 
that  $4= Se with the result that  only the Y-mode is 
found operative. If, however, Sa is significantly lower 
than $2, this factor outweighs the reshuffle factor and 
leads to the appearance of X-modes found in practice. 

As a corollary from these criteria, we may infer the 
most likely operative K2 corresponding to a given 
rational ~1, and, reciprocally, the most likely operative 
~2 corresponding to a given rational K1. 

The 'least shear' criterion has an interesting geo- 
metrical interpretation. By virtue of (1) it implies that 
the angle v/1K~, or ~2K1, as the case may be, is prefer- 
ably as small as possible, i.e. that  the pair of rational 
elements satisfying (6) or (8) should be as nearly as 
possible perpendicular. From this point of view, the 
present theory makes contact with Mallard's law 
(Friedel, 1926), an early attempt at relating twinning 
elements to lattice planes and directions of pseudo- 
symmetry. However, our analysis goes beyond Mal- 
lard's law in two respects. The latter is illuminating 
as regards indium or mercury, where the operative 
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angle happens to be extremely small, but  fails for 

b.c.e, twins, where ~xK~. = ~]2K1 = 19 ° 2 8 ' ;  only detailed 
mathematical  analysis can establish the lat ter  angle 
as the minimum of its class. A further limitation 
appears with diatomie motif units- Mallard's law has 
relevance only to Y-modes and thus fails to disclose 
the existence of possible X-modes. By recognising the 
loss of symmetry  in passing from zinc to a-uranium, 
Frank (1953) was able to anticipate the Y-mode (2) 
but not the Y-mode (4); the reciprocal X-modes 
(3), (5) were also anticipated by Frank, but on the 
basis of a straightforward comparison with the X- 
modes of zinc and not by virtue of Mallard's law. 

As shown by the success of the selection criteria, 
the choice of operative modes is governed mainly by 
crystallographic factors and not by the misfit energy 
at  the twin boundary. However, the influence of the 
lat ter  factor most probably determines the preference 
for rotation twins as against their reciprocal reflection 
twins- an irrational habit  plane passes through only 
one row of atoms, and therefore involves less boundary 
misfit energy than a rational habit  plane. For similar 
reasons, with compound twins, the K~ of higher 
indices is preferred, e.g. in a-uranium K1=(130) 
rather than (110) and in fl-tin K I =  (301) rather than 
(101). As regards the preference for K I = ( l l 0 )  to 
K 2 - - ( 0 0 1 )  in bismuth, a reason has already been 
advanced on the basis of reaction-path analysis 
(Jaswon & Dove, 1956)" this does not exclude the 
boundary energy as an additional factor working in 
the same direction. If the reaction-path factor is valid 
for bismuth, then KI=(001)  should not be exhibited 
even when the usual mode is prevented from growing 
by external constraints. 

The selection criteria indicate 

K~ = (111), K2= (113), 
~]~=[112], ~2=[332], S=1/(21/2) (9) 

and its reciprocal, as the most likely operative X- 
modes for crystals based on the f.c.e, lattice, e.g. 
diamond and galena. According to Tertsch (1949), 
these modes are actually exhibited by the latter. 
Deformation twinning has never been substantiated 
in diamond, but has been reported in germanium and 
silicon under critical conditions of temperature and 
loading, apparently characterized by composition 
planes (111) and (123). Unfortunately no accompany- 
ing element ~2 has been determined, with the result 
tha t  neither S nor Z are available from the experi- 
mental data. I t  may be remarked, however, that  
K1 = (123) has an exceptional property, invoked in an 
analysis by Bullough (1957): reshuffles are completely 
eliminated for twinning displacements parallel to this 
plane, since it passes through both atoms of the motif 
unit. This could well be a significant factor, bearing 
in mind the strong, directed bonds linking neighbour- 
ing atoms in diamond, and to a lesser extent in ger- 
manium and silicon. On the other hand, for the class 

of homogeneous twinning shears on the plane (123), 
calculation shows tha t  $2 = 21/6. This value is extra- 
ordinarily high, since S <  1 for every other twin so 
far established. A tolerable S could be obtained by 
supposing every fifth or sixth plane to execute the 
macroscopic deformation, but this raises the problem 
of why such a mode should be preferred to (9). The 
composition plane (111) is consistent with (9) or with 
the most likely operative Y-mode 

K~= (111), K2= (111), 

n~=[ l l2 ] ,  ~72=[112], S=1 /1 /2 .  (10) 

Concluding remarks 

From the work of this and previous papers, we 
draw the following general conclusions. 

1. The limitations inherent in the conventional 
t reatment  of twinning, which proceeds by first setting 
up deformations in a continuous medium and then 
introducing an atomic model, may be obviated by a 
direct approach at the atomic level. 

2. The invariant quant i ty  ~w= p n l +  qn2 + rn2 char- 
acterises the scale of homogeneity of the deformation. 
For all metal twins so far established, 27=2 or 4, 
indicating homogeneity on the finest possible scale. 
Any reported twin for which 2:> 4 should be treated 
with reserve. 

3. Formal crystallographic criteria successfully select 
all the established operative twinning modes. Bound- 
ary misfit energy forms a minor factor in comparison, 
bu t - -a s  between a mode and its reciprocal--governs 
the preference for the composition plane of higher 
indices. 

4. The rule, suggested by Cahn (1953), tha t  P and 2 
are always at least approximately rational, has little 
significance as regards the selection of operative 
modes. In particular, if a plane of symmetry  is found 
to exist perpendicular to K1, it should not be identified 
as P without closer examination. 

5. The conventional, unsatisfactory, technique of 
projecting the crystal on to P in order to examine 
atomic twinning displacements, is unnecessary. If K1 
is rational, the displacements of planes parallel to K 
should be examined, as described elsewhere (Jaswon 
& Dove, 1956). If ~]1 is rational, the displacements of 
planes parallel to K~ should be examined, as described 
in the present text. 

The work reported here is concerned primarily with 
net twinning displacements, and not with the reaction 
paths of the atoms in moving from initial to final 
positions. In this respect, the t reatment  is comparable 
with current formal treatments of the martensite 
transformation, which are successful in selecting the 
operative martensite habit  planes (Bilby & Christian, 
1955). Some differences between martensite and twin- 
ning may, however, be noted. Martensite atom dis- 
placements are never perfectly homogeneous, even in 

16"  
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the simplest crystals. :Nothing akin to rotation twin- 
ning is envisaged in martensite theory, even though 
most of the reported habit  planes are irrational. The 
martensite transformation can only, in general, be 
accomplished by  an invariant plane strain. The mar- 
tensite habit  plane generally bears little or no relation 
to the planes on which the main glide processes take 
place (Jaswon, 1958), whereas the twinning habit  
plane may  be generally identified as the plane K1 of 
the crystallographic analysis. Finally, by virtue of the 
inequali ty theorem, selection criteria for twinning 
planes have been established on a much more rigorous 
basis than the corresponding criteria for martensite 
habit  planes. 

A P P E N D I X  I 

Fig. 2 depicts three parallel lattice rows passing 
respectively through the atoms at  L, 0, --L. The sym- 
bol L =  Ix, y, z] stands either for the lattice point of 
(integer) co-ordinates x, y, z or for the lattice vector 
joining the origin to this lattice point. The central row 
is identified as the twin axis ~1 = [pqr], and TI = [P, q, r] 
stands for the unit lattice vector (or corresponding 
lattice point) in this direction. We now suppose the 
atom at L suffers a displacement tTi, thereby becoming 
twin-related to some atom in the row passing through 
- L ,  i.e. an atom having a lattice position of the form 
- L + n v l  where n is an integer. This relationship is 
compactly symbolized 

L -+ L + t l l / /  - L + n r l ,  (1) 

twinning of the second kind being implied by the 
double solidus. Introducing the condition tha t  the 
join of the twin-equivalent positions must be per- 
pendicular to vl, we arrive at the equation 

t = n - 2 L ' ~ / ~ 1 2 ;  ~ -  [11[. (2) 

For any integer n, (2) determines a possible twinning 
displacement, tT1, of the atom at L. On the other hand, 
given that  the atom at L undergoes a certain displace- 
ment tll, this will be a possible twinning displacement 
only if an integer n exists to satisfy (2). 

Applying (2) to the three special lattice points 
[1, 0, 0], [0, l, 0], [0, 0, 1] defining a primitive unit 
cell, we introduce the three displacement parameters 

t 1 = n l - 2 1 1 ,  O, 0]. T1/~ 2, t9 = n 2 - 2 [ 0 ,  1, 0]. Vl/~ e, 

t s=n~-2[O,  O, ] ] . n / ~  ~, (3) 

where n~, n2, n3 are any three assigned integers. These 
displacements, together with the condition tha t  the 
origin atom remains fixed, determine a homogeneous 
deformation 5 z of the crystal on bearing in mind that  

Ix, y, z] - x[1, 0, 0] + y[0, 1, 0] + z [0, 0, 1]. 

With respect to 5P, the atom at [x, y, z] undergoes a 
displacement 

(hx + t2y + t3z)vl (4) 

as can be seen directly, or more formally by setting 
up the linear transformation defined by 

[0, 0, 0] ~ [0, 0, 0], [1, 0, 0] ~ [hp, t~q,t~r], etc. 

The displacement (4) is a twinning displacement. For 
on multiplying the three equations (3) by x, y, z 
respectively and adding, it follows tha t  

t l x + t ~ y + t s z = n l x + n 2 y + n 3 z - 2 [ x ,  y, z]-Tl[N2; (5) 

by comparison with (2), since n l x+n2y+naz  is an 
integer, we may assert 

[x, y, z] --+ [x, y, z] + (tlx +t~y +tsz)~ // --Ix, y, z] 
+ (nix  + hey  + nsz) l l  , (6) 

utilising the symbolic scheme (1). Strictly speaking, 
the second of the twin-related positions in (6) should 
not be held, at  this stage, as referring to an actual 
atom position but  to a site occupied by an atom prior 
to deformation, for no distinction has yet  been drawn 
between a strained and unstrained region of the 
crystal. Alternatively, we may think of a 'ghost' 
crystal superimposed on the actual crystal and un- 
affected by ~ :  the deformed actual crystal is then 
related to the 'ghost' by a rotation of 180 ° about ~1. 

I t  follows, as an immediate corollary from (4), tha t  
the plane tlx + t2y + tsz = O, here denoted K, remains 
invariant with respect to 5 p. Furthermore, the dis- 
placement of the atom at Ix, y, z] varies as its distance 
from K. The deformation must therefore consist of 
homogeneous simple shear displacements parallel to K, 
possibly combined with a uniaxial expansion or con- 
traction normal to K. Only when the latter component 
is absent does the displacement direction [pqr] lie 
within K, and conversely. This limitation is ensured 
by the mathematical condition 

V = ptl + qt~ + rta = 0 ,  (7) 

an equation which implies relation (6) of the text  on 
bearing in mind tha t  V = X - 2  from (5). In these 
circumstances K becomes identified as the element K1 
of a possible twin, its indices being provided at once 
from (3). The existence of an invariant plane allows 
us to envisage ~ as applied to only one of the regions 
defined by this plane, i.e. the 'twinned crystal' ,  the 
other region being the 'matrix crystal', so tha t  the 
concept of a 'ghost' crystal becomes unnecessary. 
Equation (7) admits of a second interpretation, 
equivalent in effect to the preceding: it signifies tha t  
the atom at [p, q, r] suffers no displacement, i.e. tha t  
the direction ~1 itself remains unstrained. Failing 
V=O, there arise the possibilities V - - ±  1, + 2 , . . .  
depending on the choice of nl, n2, ns. Positive values 
for V imply extensions of 100%, 2 0 0 % , . . .  in the 
direction N1, showing tha t  only a superlattice of the 
twin is generated; negative values for V imply cor- 
responding contractions, implying that  the atoms 
coalesce (V = - 1) or interchange places (V < - 1). 
These possibilities have interesting topological conse- 
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quences, but can have no physical significance in 
ordinary three-dimensional space. 

The vector [x, y, z] remains unchanged in length if 

I[x, y, z]l = I[x, y, z] + (t~x + t2y + t3z)vl] , 
i.e. if 

hx+t~y+taz= --2Ix, y, z]. Ti/~ 2. 

By comparison with (5), the locus of the point x, y, z 
is seen to be the plane n ix+ n2y+ naz = 0. This plane 
suffers no net distortion with respect to 5f and there- 
fore effectively undergoes a rigid-body rotation Y2 
about its axis of intersection with K. When V=0,  
all parallel planes behave in the same way, becoming 
identified as the K2-planes of a possible twin. When 
V =_N, however, the planes 

n l x + n 2 y + n s z =  +_ 1, +2, . . .  

in addition to the rotation zg, undergo rigid-body 
translations + Nrl, + 2Nvl, . . .  respectively, in ac- 
cordance with the concluding remarks of the preced- 
ing paragraph. 

A P P E N D I X  II 

Fig. 7 depicts three diatomic motif units, centred 
on the reference lattice points L, 0, - L  respectively. 
The constituent pairs of atoms have co-ordinates 
L _+ u, ___ u, - L _+ u respectively, where 2u denotes the 
'basis' vector defining the structure of the motif. 
The twinning axis is identified as the direction of the 
unit reference lattice vector r l=[p,  q, r]. We now 
suppose the motif unit at L undergoes a rigid-body 
translation according to the scheme (1) of Appendix I. 
Its mean-centre r is twinned by this translation, and 
twinning is completed by a reshuffle which effectively 
amounts to a rotation of the unit about an axis through 
r perpendicular to 1], u. On applying to each unit an 
appropriate translation, i.e. of amount (4) for the unit 
centred at [x, y, z], we thereby set up a homogeneous 
deformation 5f which twins all the mean-centres. 
If so, each motif unit without exception completes its 
twinning by means of the rotational reshuffle. 5f has 
formally the same properties as the simple crystal 
deformation characterized by Z = 2 .  This completes 
the description of the Y-mechanism, the simplest 
twinning mechanism that  can be envisaged for a 
diatomic motif. 

We now extend the analysis to embrace the possi- 
bility of the motif unit suffering disruption. This is 
effected by writing, in place of (1) and (2), 

L-+ L + T ~ / /  - L + ½ n ~ ;  T = ½ n - 2 L ' v l / ~  2, (8) 

where n is any integer: in words, the unit at L under- 
goes a translation Trl whereby its mean-centre becomes 
twin-related to the point - L  + ½nvl. If n is even, the 
latter qualifies as a lattice point of R and twinning is 
completed as above. If n is odd, the latter falls half- 

way between two lattice points of R and the preceding 
mechanism cannot apply. The only feasible alternative 
is for the constituent atoms to separate, preferably 
by means of equal and opposite displacements in the 
direction ~1. That the required reshuffles exist for the 
case X = 4  is evident from Fig. 8. This may also be 
proved formally, as well as the fact that  the con- 
stituent atoms need never separate by more than an 
interatomic spacing in the direction ~1. 

Identifying L successively with the reference lattice 
points [1, 0, 0], etc., we introduce the translation 
parameters 

T~=½n~-2[1, 0, 0].rl/~ 2, 
T2=½n~-2[O, 1, 0].rl/~ 2, etc. ,  (9) 

where at least one of the assigned integers nl, n2, n8 
is odd. These determine a homogeneous deformation 
5 p, with respect to which the motif unit at [x, y, z] 
undergoes a rigid-body translation (Tlx + T2y + Tsz)~ 
given by 

Tlx  + Tgy + Taz 
=½(nlx+n2y+naz)--2[x,  y, z]'11/~ 2. (10) 

I t  will be noted that  the integer nlx+n2y+naz  may 
be even or odd. From (10) it follows that  

0 = Tip  + T2q + Tar = ½(nip + neq + nar) - 2 

expresses the condition for 5f  to be a simple shear, 
as already formulated in relation (7) of the text. 
From (10) it also follows, as in the preceding Appendix, 
that  the plane (nln2n3) undergoes a net rigid-body 
rotation with respect to 5 p. 

Mean-centres on the even planes n~x+n2y+n3z= 
0, _+2, . . .  are twinned by 5f, thereby enabling the 
corresponding motif units to undertake the rotational 
reshuffle. Mean-centres on the odd planes nix + nay + naz 
= _+ 1, +_ 3, . . .  are not twinned by 5f, and the cor- 
responding motif units must suffer disruption: half 
the atoms on plane 2 N + l  move into plane 2 N + 3  
and the other half move into plane 2 N - 1 ;  in return, 
plane 2 N + l  is reconstituted in the correct twin 
configuration by atoms from planes 2 N -  1 and 2N + 3. 
This completes the description of the X-mechanism 
for the case Z = 4 ,  the simplest case that  can be en- 
visaged. The analysis may be readily extended to the 
case 27--2N by writing 

Tlx  + T2y + T3z = l lN  (nlx + n2y + n3z) - 2[x, y, z]. rll ~l ~ 

in place of (10). 
Given a pair of rational twinning elements 71 and 

K2, the indices of K1 are provided either by (3) or (9) 
according as 27--2 or 4 respectively. These formulae 
are, however, limited to co-ordinate systems based on 
a primitive unit cell of the space lattice. A more general 
formula for K I =  (h'k'/'), which holds for any choice 
of unit cell, is 
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h ' = h - N [ 1 ,  O, 0]. [p, q, r]/[p, q, r]~, 
/ c ' = / c - N [ 0 ,  1, 0]. [p, q, r]/[p, q, r] 2, 

l ' =  l - N [ 0 ,  0, 1]-[p, q, r]/[p, q, r] ~, 

[pqr] =-- ~1, (hkl) =-- K2, hp + kq + lr = N .  
where 

(11) 

This obviously embraces (3) and (9) as special cases. 
The formula  m a y  be proved by  a slight re -adapta t ion  
of the  analysis,  or directly by  noting t ha t  the plane 
(h'k'l') has two propert ies which identify it as K~: 
it  contains ~ ,  and  its intersection with K9 is per- 
pendicular  to ~]1. 

As an  exercise on the  use of (11), we find the 
c~-uranium K1 corresponding to U1-- [312], K~= (112): 

h' --= 1 - 811, O, O] • [3, l ,  2] = 1 - 8"3a9 
9a ~ + b e + 4c ~, 9a e + b e + 4c e 

- 15a  ~ + b ~ + 4c e 

9a e+b  e+4c  e , 

k ' = 1 - 8 [ 0 ' 1 ' 0 ] ' [ 3 ' 1 ' 2 ]  = 1 -  8 - b  ~ 
9a 9. + b 2 + 4c 2 9a ~ + b 9. + 4c 2 

9a ~ _ 7b ~ + 4c ~ 
9a ~. + b ~. + 4c ~. , 

I ' = 2 - 8 [ 0 ' 0 ' 1 ] ' [ 3 ' 1 ' 2 ] = 2 -  8 .2c~ 
9a 9. + b ~. + 4c e 9a e + b 9 + 4c~ 

18a ~ + 2b ~. _ 8c~ 

9a ~ + b 2 + 4c e , 

whence (h'k'l') = '  (172)' on eliminating the  denominator  
and  inserting numerical  values for the  lat t ice para-  
meters  a, b, c. I t  need ha rd ly  be s ta ted  t h a t  the  cor- 
responding reciprocal problem is also solved by  (11). 

Thanks  are due to Dr  J .  D. H.  Donnay  for helpful 
advice on crystal lographic terminology,  and to Dr  
B. A. Bilby for reading the manuscr ipt .  
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An Axial Retigraph 
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A retigraph, an X-ray diffraction camera recording on film an undistorted projection of one plane 
of the reciprocal lattice of a crystal, has been constructed with some novel features. The mapping of 
the remainder of the reciprocal lattice on to the film plane is analysed together with other aspects 
of the camera geometry which also applies to the precession camera. The Lorentz and polarization 
corrections, both for polarized and for unpolarized incident radiation, are calculated. Methods of 
setting such instruments employ characteristic spots or Laue streaks. 

1. I n t r o d u c t i o n  

The precession camera (Buerger, 1944), which is being 
increasingly used for all  types  of crystal lographic 
examinations,  has certain drawbacks  which restr ict  
its application. The chief of these are the non-uni- 
formi ty  of the  speed of precession (Waser, 1951), 
which requires the use of complicated charts  for ap- 
plying the  Lorentz velocity-factor correction, and the 
long min imum specimen-to-film distance (about 50 

mm.),  which is much greater  t han  the  op t imum for 
small crystals (Huxley,  1953). 

An axial re t igraph has been designed and con- 
s t ructed with the limited objective of eliminating these 
deficiencies. In  mechanism it differs from most  other  
ret igraphs (de Jong  & Bouman,  1938; Bagarya t sk i i  & 
Umanskii ,  1949; K v i t k a  & Umanski i ,  1951; Torroja,  
Pajares  & Amor6s,  1951; Gay & Clastre, 1953; 
Rimsky,  1952) in permit t ing  #, the  angle of precession, 


